Step
*
1
1
1
1
1
of Lemma
compact-subinterval
1. I : Interval
2. J : {J:Interval| icompact(J)}
3. J ⊆ I
4. icompact(J)
5. ∀r:ℝ. (r ∈ J
⇐⇒ left-endpoint(J)≤r≤right-endpoint(J))
6. left-endpoint(J) ∈ J
7. right-endpoint(J) ∈ J
8. ∀r:ℝ. (r ∈ I
⇐⇒ ∃n:ℕ+. (r ∈ i-approx(I;n)))
9. n1 : ℕ+
10. left-endpoint(J) ∈ i-approx(I;n1)
11. n : ℕ+
12. right-endpoint(J) ∈ i-approx(I;n)
⊢ i-nonvoid(i-approx(I;imax(n;n1)))
BY
{ (With ⌜left-endpoint(J)⌝ (D 0)⋅ THEN EAuto 1) }
1
1. I : Interval
2. J : {J:Interval| icompact(J)}
3. J ⊆ I
4. icompact(J)
5. ∀r:ℝ. (r ∈ J
⇐⇒ left-endpoint(J)≤r≤right-endpoint(J))
6. left-endpoint(J) ∈ J
7. right-endpoint(J) ∈ J
8. ∀r:ℝ. (r ∈ I
⇐⇒ ∃n:ℕ+. (r ∈ i-approx(I;n)))
9. n1 : ℕ+
10. left-endpoint(J) ∈ i-approx(I;n1)
11. n : ℕ+
12. right-endpoint(J) ∈ i-approx(I;n)
⊢ left-endpoint(J) ∈ i-approx(I;imax(n;n1))
Latex:
Latex:
1. I : Interval
2. J : \{J:Interval| icompact(J)\}
3. J \msubseteq{} I
4. icompact(J)
5. \mforall{}r:\mBbbR{}. (r \mmember{} J \mLeftarrow{}{}\mRightarrow{} left-endpoint(J)\mleq{}r\mleq{}right-endpoint(J))
6. left-endpoint(J) \mmember{} J
7. right-endpoint(J) \mmember{} J
8. \mforall{}r:\mBbbR{}. (r \mmember{} I \mLeftarrow{}{}\mRightarrow{} \mexists{}n:\mBbbN{}\msupplus{}. (r \mmember{} i-approx(I;n)))
9. n1 : \mBbbN{}\msupplus{}
10. left-endpoint(J) \mmember{} i-approx(I;n1)
11. n : \mBbbN{}\msupplus{}
12. right-endpoint(J) \mmember{} i-approx(I;n)
\mvdash{} i-nonvoid(i-approx(I;imax(n;n1)))
By
Latex:
(With \mkleeneopen{}left-endpoint(J)\mkleeneclose{} (D 0)\mcdot{} THEN EAuto 1)
Home
Index