Nuprl Lemma : compose-mfun

[X,Y,Z:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[dZ:metric(Z)]. ∀[f:FUN(X ⟶ Y)]. ∀[g:FUN(Y ⟶ Z)].
  (g f ∈ FUN(X ⟶ Z))


Proof




Definitions occuring in Statement :  mfun: FUN(X ⟶ Y) metric: metric(X) compose: g uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  mfun: FUN(X ⟶ Y) uall: [x:A]. B[x] member: t ∈ T is-mfun: f:FUN(X;Y) so_apply: x[s] compose: g all: x:A. B[x] implies:  Q prop: guard: {T}
Lemmas referenced :  compose_wf meq_wf is-mfun_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt introduction cut setElimination thin rename dependent_set_memberEquality_alt extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis lambdaFormation_alt dependent_functionElimination independent_functionElimination universeIsType because_Cache axiomEquality equalityTransitivity equalitySymmetry setIsType functionIsType isect_memberEquality_alt isectIsTypeImplies inhabitedIsType instantiate universeEquality applyEquality

Latex:
\mforall{}[X,Y,Z:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[dZ:metric(Z)].  \mforall{}[f:FUN(X  {}\mrightarrow{}  Y)].
\mforall{}[g:FUN(Y  {}\mrightarrow{}  Z)].
    (g  o  f  \mmember{}  FUN(X  {}\mrightarrow{}  Z))



Date html generated: 2019_10_30-AM-06_22_13
Last ObjectModification: 2019_10_02-AM-09_58_01

Theory : reals


Home Index