Nuprl Lemma : compose-mfun
∀[X,Y,Z:Type]. ∀[dX:metric(X)]. ∀[dY:metric(Y)]. ∀[dZ:metric(Z)]. ∀[f:FUN(X ⟶ Y)]. ∀[g:FUN(Y ⟶ Z)].
  (g o f ∈ FUN(X ⟶ Z))
Proof
Definitions occuring in Statement : 
mfun: FUN(X ⟶ Y)
, 
metric: metric(X)
, 
compose: f o g
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
universe: Type
Definitions unfolded in proof : 
mfun: FUN(X ⟶ Y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
is-mfun: f:FUN(X;Y)
, 
so_apply: x[s]
, 
compose: f o g
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
compose_wf, 
meq_wf, 
is-mfun_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
introduction, 
cut, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
universeIsType, 
because_Cache, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
setIsType, 
functionIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType, 
instantiate, 
universeEquality, 
applyEquality
Latex:
\mforall{}[X,Y,Z:Type].  \mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].  \mforall{}[dZ:metric(Z)].  \mforall{}[f:FUN(X  {}\mrightarrow{}  Y)].
\mforall{}[g:FUN(Y  {}\mrightarrow{}  Z)].
    (g  o  f  \mmember{}  FUN(X  {}\mrightarrow{}  Z))
Date html generated:
2019_10_30-AM-06_22_13
Last ObjectModification:
2019_10_02-AM-09_58_01
Theory : reals
Home
Index