Nuprl Lemma : connected_wf

[X:Type]. Connected(X) ∈ ℙsupposing X ⊆r ℝ


Proof




Definitions occuring in Statement :  connected: Connected(X) real: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a connected: Connected(X) subtype_rel: A ⊆B prop: so_lambda: λ2x.t[x] implies:  Q all: x:A. B[x] so_apply: x[s] and: P ∧ Q
Lemmas referenced :  uall_wf real_wf all_wf req_wf exists_wf or_wf subtype_rel_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin instantiate extract_by_obid sqequalHypSubstitution isectElimination functionEquality hypothesis applyEquality lambdaEquality cumulativity hypothesisEquality universeEquality setEquality because_Cache lambdaFormation setElimination rename functionExtensionality productEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality

Latex:
\mforall{}[X:Type].  Connected(X)  \mmember{}  \mBbbP{}'  supposing  X  \msubseteq{}r  \mBbbR{}



Date html generated: 2017_10_03-AM-10_11_23
Last ObjectModification: 2017_07_10-AM-10_42_58

Theory : reals


Home Index