Nuprl Lemma : connectedness-main-lemma

x:ℝ. ∀g:ℕ ⟶ ℝ.  (lim n→∞.g  (∀P:ℝ ⟶ 𝔹. ∃z:{z:ℝaccelerate(3;x)} (∃n:ℕ [(z (g n))])))


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y accelerate: accelerate(k;f) real: nat: bool: 𝔹 all: x:A. B[x] sq_exists: x:A [B[x]] exists: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] nat_plus: + decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] prop: false: False subtype_rel: A ⊆B real: so_lambda: λ2x.t[x] so_apply: x[s] converges-to: lim n→∞.x[n] y sq_exists: x:A [B[x]] nat: rneq: x ≠ y guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q ge: i ≥  sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B squash: T rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 int_seg: {i..j-} lelt: i ≤ j < k int_nzero: -o true: True nequal: a ≠ b ∈  sq_type: SQType(T) less_than': less_than'(a;b) stable: Stable{P}

Latex:
\mforall{}x:\mBbbR{}.  \mforall{}g:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.
    (lim  n\mrightarrow{}\minfty{}.g  n  =  x  {}\mRightarrow{}  (\mforall{}P:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}z:\{z:\mBbbR{}|  P  z  =  P  accelerate(3;x)\}  .  (\mexists{}n:\mBbbN{}  [(z  =  (g  n))])))



Date html generated: 2020_05_20-PM-00_07_02
Last ObjectModification: 2020_01_08-AM-10_39_01

Theory : reals


Home Index