Nuprl Lemma : continuous-abs-ext

[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈  |f[x]| continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rabs: |x| uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  continuous-minus continuous-max continuous-abs member: t ∈ T
Lemmas referenced :  continuous-abs continuous-minus continuous-max
Rules used in proof :  equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  |f[x]|  continuous  for  x  \mmember{}  I)



Date html generated: 2018_05_22-PM-02_17_47
Last ObjectModification: 2018_05_21-AM-00_32_49

Theory : reals


Home Index