Nuprl Lemma : continuous-abs

[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈  |f[x]| continuous for x ∈ I)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval rabs: |x| uall: [x:A]. B[x] so_apply: x[s] implies:  Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top implies:  Q so_lambda: λ2x.t[x] rfun: I ⟶ℝ so_apply: x[s] prop: label: ...$L... t
Lemmas referenced :  rabs-as-rmax continuous-max real_wf i-member_wf rminus_wf continuous-minus continuous_wf rfun_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity cut lemma_by_obid sqequalHypSubstitution sqequalTransitivity computationStep isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis isect_memberFormation lambdaFormation hypothesisEquality lambdaEquality applyEquality setEquality because_Cache independent_functionElimination

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  {}\mRightarrow{}  |f[x]|  continuous  for  x  \mmember{}  I)



Date html generated: 2016_05_18-AM-09_11_59
Last ObjectModification: 2015_12_27-PM-11_28_07

Theory : reals


Home Index