Nuprl Lemma : continuous_wf

[I:Interval]. ∀[f:I ⟶ℝ].  (f[x] continuous for x ∈ I ∈ ℙ)


Proof




Definitions occuring in Statement :  continuous: f[x] continuous for x ∈ I rfun: I ⟶ℝ interval: Interval uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T
Definitions unfolded in proof :  continuous: f[x] continuous for x ∈ I uall: [x:A]. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] all: x:A. B[x] and: P ∧ Q implies:  Q so_apply: x[s] rfun: I ⟶ℝ nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q rless: x < y sq_exists: x:{A| B[x]} decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top
Lemmas referenced :  rfun_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_plus_properties rless-int rdiv_wf i-member-approx rsub_wf rabs_wf rleq_wf i-member_wf int-to-real_wf rless_wf real_wf sq_exists_wf i-approx_wf icompact_wf nat_plus_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis hypothesisEquality lambdaEquality lambdaFormation setElimination rename because_Cache productEquality natural_numberEquality functionEquality applyEquality dependent_functionElimination independent_functionElimination dependent_set_memberEquality independent_isectElimination inrFormation productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[I:Interval].  \mforall{}[f:I  {}\mrightarrow{}\mBbbR{}].    (f[x]  continuous  for  x  \mmember{}  I  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-09_08_45
Last ObjectModification: 2016_01_17-AM-02_35_08

Theory : reals


Home Index