Nuprl Lemma : rdiv_wf
∀[x,y:ℝ].  (x/y) ∈ ℝ supposing y ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
Definitions unfolded in proof : 
rdiv: (x/y)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
rmul_wf, 
rinv_wf2, 
rneq_wf, 
int-to-real_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[x,y:\mBbbR{}].    (x/y)  \mmember{}  \mBbbR{}  supposing  y  \mneq{}  r0
Date html generated:
2016_05_18-AM-07_21_10
Last ObjectModification:
2015_12_28-AM-00_47_14
Theory : reals
Home
Index