Nuprl Lemma : rsub_wf

[x,y:ℝ].  (x y ∈ ℝ)


Proof




Definitions occuring in Statement :  rsub: y real: uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T rsub: y
Lemmas referenced :  radd_wf rminus_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[x,y:\mBbbR{}].    (x  -  y  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-06_55_04
Last ObjectModification: 2015_12_28-AM-00_31_23

Theory : reals


Home Index