Nuprl Lemma : icompact_wf
∀[I:Interval]. (icompact(I) ∈ ℙ)
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
icompact: icompact(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Lemmas referenced : 
and_wf, 
i-nonvoid_wf, 
i-closed_wf, 
i-finite_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  (icompact(I)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_45_30
Last ObjectModification:
2015_12_27-PM-11_48_51
Theory : reals
Home
Index