Nuprl Lemma : i-closed_wf
∀[I:Interval]. (i-closed(I) ∈ ℙ)
Proof
Definitions occuring in Statement : 
i-closed: i-closed(I), 
interval: Interval, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
interval: Interval, 
i-closed: i-closed(I), 
isl: isl(x), 
outl: outl(x), 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bor: p ∨bq, 
bfalse: ff, 
assert: ↑b
Lemmas referenced : 
and_wf, 
assert_wf, 
isl_wf, 
real_wf, 
true_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
unionElimination, 
sqequalRule, 
lemma_by_obid, 
isectElimination, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[I:Interval].  (i-closed(I)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_18_47
Last ObjectModification:
2015_12_27-PM-11_57_30
Theory : reals
Home
Index