Nuprl Lemma : i-finite_wf
∀[J:Interval]. (i-finite(J) ∈ ℙ)
Proof
Definitions occuring in Statement : 
i-finite: i-finite(I)
, 
interval: Interval
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
i-finite: i-finite(I)
, 
interval: Interval
Lemmas referenced : 
and_wf, 
assert_wf, 
isl_wf, 
real_wf, 
top_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
unionEquality, 
hypothesis, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[J:Interval].  (i-finite(J)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-08_17_05
Last ObjectModification:
2015_12_27-PM-11_58_16
Theory : reals
Home
Index