Nuprl Lemma : i-finite_wf

[J:Interval]. (i-finite(J) ∈ ℙ)


Proof




Definitions occuring in Statement :  i-finite: i-finite(I) interval: Interval uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T i-finite: i-finite(I) interval: Interval
Lemmas referenced :  and_wf assert_wf isl_wf real_wf top_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination unionEquality hypothesis hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[J:Interval].  (i-finite(J)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_17_05
Last ObjectModification: 2015_12_27-PM-11_58_16

Theory : reals


Home Index