Step
*
1
of Lemma
converges-cauchy-witness
1. x : ℕ ⟶ ℝ
2. y : ℝ
3. cvg : lim n→∞.x[n] = y
4. <y, cvg> ∈ x[n]↓ as n→∞
⊢ λk.(cvg (2 * k)) ∈ cauchy(n.x[n])
BY
{ ((Assert fst((TERMOF{converges-iff-cauchy-ext:o, \\v:l} x)) ∈ x[n]↓ as n→∞
⇒ cauchy(n.x[n]) BY
(GenConclAtAddr [2;1;1] THEN Unfold `all` -2 THEN All (RepUR ``so_apply``) THEN Auto))
THEN RW (AddrC [2] (TagC (mk_tag_term 10))) (-1)
) }
1
1. x : ℕ ⟶ ℝ
2. y : ℝ
3. cvg : lim n→∞.x[n] = y
4. <y, cvg> ∈ x[n]↓ as n→∞
5. λconverges.let y,c = converges
in λk.(c (2 * k)) ∈ x[n]↓ as n→∞
⇒ cauchy(n.x[n])
⊢ λk.(cvg (2 * k)) ∈ cauchy(n.x[n])
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. y : \mBbbR{}
3. cvg : lim n\mrightarrow{}\minfty{}.x[n] = y
4. <y, cvg> \mmember{} x[n]\mdownarrow{} as n\mrightarrow{}\minfty{}
\mvdash{} \mlambda{}k.(cvg (2 * k)) \mmember{} cauchy(n.x[n])
By
Latex:
((Assert fst((TERMOF\{converges-iff-cauchy-ext:o, \mbackslash{}\mbackslash{}v:l\} x)) \mmember{} x[n]\mdownarrow{} as n\mrightarrow{}\minfty{} {}\mRightarrow{} cauchy(n.x[n]) BY
(GenConclAtAddr [2;1;1] THEN Unfold `all` -2 THEN All (RepUR ``so\_apply``) THEN Auto))
THEN RW (AddrC [2] (TagC (mk\_tag\_term 10))) (-1)
)
Home
Index