Step
*
1
2
1
1
of Lemma
cosine-approx-lemma
1. a : {2...}
2. N : ℕ+
3. aa : {4...}
4. aa = a^2 ∈ {4...}
5. genfact-inv(N;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
= genfact-inv(N;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
∈ {n:ℕ| N ≤ genfact(n;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))}
6. x : ℕ
7. N ≤ genfact(x;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
⊢ a^((2 * x) + 2) * ((2 * x) + 2)! ~ genfact(x;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
BY
{ (HypSubst' (-4) 0
THEN All Thin
THEN NatInd (-1)
THEN (RWO "genfact-step" 0 THENA Auto)
THEN (RWW "-1<" 0 THENA Auto)
THEN AutoSplit) }
1
1. a : {2...}
2. x : ℤ
3. 0 < 1
⊢ a^2 * (2)! ~ 2 * a^2
2
1. a : {2...}
2. x : ℤ
3. ¬x < 1
4. 0 < x
5. a^((2 * (x - 1)) + 2) * ((2 * (x - 1)) + 2)! ~ genfact(x - 1;2 * a^2;k.a^2 * ((2 * k) + 2) * ((2 * k) + 1))
⊢ a^((2 * x) + 2) * ((2 * x) + 2)! ~ (a^2 * ((2 * x) + 2) * ((2 * x) + 1))
* a^((2 * (x - 1)) + 2)
* ((2 * (x - 1)) + 2)!
Latex:
Latex:
1. a : \{2...\}
2. N : \mBbbN{}\msupplus{}
3. aa : \{4...\}
4. aa = a\^{}2
5. genfact-inv(N;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
= genfact-inv(N;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
6. x : \mBbbN{}
7. N \mleq{} genfact(x;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
\mvdash{} a\^{}((2 * x) + 2) * ((2 * x) + 2)! \msim{} genfact(x;2 * aa;k.aa * ((2 * k) + 2) * ((2 * k) + 1))
By
Latex:
(HypSubst' (-4) 0
THEN All Thin
THEN NatInd (-1)
THEN (RWO "genfact-step" 0 THENA Auto)
THEN (RWW "-1<" 0 THENA Auto)
THEN AutoSplit)
Home
Index