Step
*
2
4
of Lemma
cosine-poly-approx-1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^2 * i)/(2 * i)! | 0≤i≤i} - cosine(x)| ≤ (r1/r(k1))))
8. |cosine(x) - Σ{-1^i * (x^2 * i)/(2 * i)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. |Σ{-1^i * (x^2 * i)/(2 * i)! | k + 1≤i≤N}| ≤ (x^2 * (k + 1))/(2 * (k + 1))!
⊢ ((r1/r(k1)) + |Σ{-1^i * (x^2 * i)/(2 * i)! | k + 1≤i≤N}|) ≤ ((x^(2 * k) + 2/r(((2 * k) + 2)!)) + e)
BY
{ ((Subst' 2 * (k + 1) ~ (2 * k) + 2 -1 THEN Auto) THEN RWO "-1" 0 THEN Auto) }
1
1. x : {x:ℝ| (r0 ≤ x) ∧ (x ≤ r1)}
2. k : ℕ
3. e : {e:ℝ| r0 < e}
4. k1 : ℕ+
5. (r1/r(k1)) < e
6. N : ℕ
7. ∀i:ℕ. ((N ≤ i)
⇒ (|Σ{-1^i * (x^2 * i)/(2 * i)! | 0≤i≤i} - cosine(x)| ≤ (r1/r(k1))))
8. |cosine(x) - Σ{-1^i * (x^2 * i)/(2 * i)! | 0≤i≤N}| ≤ (r1/r(k1))
9. ¬(N ≤ k)
10. |Σ{-1^i * (x^2 * i)/(2 * i)! | k + 1≤i≤N}| ≤ (x^(2 * k) + 2)/((2 * k) + 2)!
⊢ ((r1/r(k1)) + (x^(2 * k) + 2)/((2 * k) + 2)!) ≤ ((x^(2 * k) + 2/r(((2 * k) + 2)!)) + e)
Latex:
Latex:
1. x : \{x:\mBbbR{}| (r0 \mleq{} x) \mwedge{} (x \mleq{} r1)\}
2. k : \mBbbN{}
3. e : \{e:\mBbbR{}| r0 < e\}
4. k1 : \mBbbN{}\msupplus{}
5. (r1/r(k1)) < e
6. N : \mBbbN{}
7. \mforall{}i:\mBbbN{}. ((N \mleq{} i) {}\mRightarrow{} (|\mSigma{}\{-1\^{}i * (x\^{}2 * i)/(2 * i)! | 0\mleq{}i\mleq{}i\} - cosine(x)| \mleq{} (r1/r(k1))))
8. |cosine(x) - \mSigma{}\{-1\^{}i * (x\^{}2 * i)/(2 * i)! | 0\mleq{}i\mleq{}N\}| \mleq{} (r1/r(k1))
9. \mneg{}(N \mleq{} k)
10. |\mSigma{}\{-1\^{}i * (x\^{}2 * i)/(2 * i)! | k + 1\mleq{}i\mleq{}N\}| \mleq{} (x\^{}2 * (k + 1))/(2 * (k + 1))!
\mvdash{} ((r1/r(k1)) + |\mSigma{}\{-1\^{}i * (x\^{}2 * i)/(2 * i)! | k + 1\mleq{}i\mleq{}N\}|) \mleq{} ((x\^{}(2 * k) + 2/r(((2 * k) + 2)!))
+ e)
By
Latex:
((Subst' 2 * (k + 1) \msim{} (2 * k) + 2 -1 THEN Auto) THEN RWO "-1" 0 THEN Auto)
Home
Index