Nuprl Lemma : cosine_functionality

[x,y:ℝ].  cosine(x) cosine(y) supposing y


Proof




Definitions occuring in Statement :  cosine: cosine(x) req: y real: uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] implies:  Q prop: nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q subtype_rel: A ⊆B nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] guard: {T} nequal: a ≠ b ∈  int_nzero: -o top: Top

Latex:
\mforall{}[x,y:\mBbbR{}].    cosine(x)  =  cosine(y)  supposing  x  =  y



Date html generated: 2020_05_20-AM-11_26_00
Last ObjectModification: 2020_01_06-PM-00_20_39

Theory : reals


Home Index