Nuprl Lemma : decidable__i-finite
∀J:Interval. Dec(i-finite(J))
Proof
Definitions occuring in Statement : 
i-finite: i-finite(I)
, 
interval: Interval
, 
decidable: Dec(P)
, 
all: ∀x:A. B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
interval: Interval
, 
i-finite: i-finite(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
cand: A c∧ B
Lemmas referenced : 
decidable__cand, 
assert_wf, 
isl_wf, 
real_wf, 
top_wf, 
decidable__assert, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
cut, 
lemma_by_obid, 
isectElimination, 
unionEquality, 
hypothesis, 
hypothesisEquality, 
isect_memberEquality, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache
Latex:
\mforall{}J:Interval.  Dec(i-finite(J))
Date html generated:
2016_05_18-AM-08_17_12
Last ObjectModification:
2015_12_27-PM-11_58_33
Theory : reals
Home
Index