Nuprl Lemma : decidable__i-finite

J:Interval. Dec(i-finite(J))


Proof




Definitions occuring in Statement :  i-finite: i-finite(I) interval: Interval decidable: Dec(P) all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] interval: Interval i-finite: i-finite(I) uall: [x:A]. B[x] member: t ∈ T prop: implies:  Q and: P ∧ Q cand: c∧ B
Lemmas referenced :  decidable__cand assert_wf isl_wf real_wf top_wf decidable__assert interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin sqequalRule cut lemma_by_obid isectElimination unionEquality hypothesis hypothesisEquality isect_memberEquality independent_functionElimination dependent_functionElimination because_Cache

Latex:
\mforall{}J:Interval.  Dec(i-finite(J))



Date html generated: 2016_05_18-AM-08_17_12
Last ObjectModification: 2015_12_27-PM-11_58_33

Theory : reals


Home Index