Nuprl Lemma : dense-in-interval_wf
∀[I:Interval]. ∀[X:{a:ℝ| a ∈ I}  ⟶ ℙ].  (dense-in-interval(I;X) ∈ ℙ)
Proof
Definitions occuring in Statement : 
dense-in-interval: dense-in-interval(I;X)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
exists: ∃x:A. B[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
dense-in-interval: dense-in-interval(I;X)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
Lemmas referenced : 
interval_wf, 
exists_wf, 
rless_wf, 
i-member_wf, 
real_wf, 
all_wf, 
i-member-between, 
rleq_weakening_rless
Rules used in proof : 
isect_memberEquality, 
universeEquality, 
cumulativity, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
productElimination, 
functionExtensionality, 
applyEquality, 
productEquality, 
functionEquality, 
because_Cache, 
rename, 
setElimination, 
lambdaFormation, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
setEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
dependent_functionElimination, 
independent_functionElimination, 
independent_isectElimination, 
dependent_set_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[X:\{a:\mBbbR{}|  a  \mmember{}  I\}    {}\mrightarrow{}  \mBbbP{}].    (dense-in-interval(I;X)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_03-AM-09_47_25
Last ObjectModification:
2017_08_30-PM-06_06_23
Theory : reals
Home
Index