Step
*
1
2
1
1
1
of Lemma
derivative-const-mul
1. a : ℝ
2. I : Interval
3. f : I ⟶ℝ
4. g : I ⟶ℝ
5. k : ℕ+
6. n : {n:ℕ+| icompact(i-approx(I;n)) ∧ iproper(i-approx(I;n))}
7. r(-r-bound(a)) ≤ a
8. a ≤ r(r-bound(a))
9. del : ℝ
10. r0 < del
11. x : ℝ
12. y : ℝ
13. x ∈ i-approx(I;n)
14. y ∈ i-approx(I;n)
15. |y - x| ≤ del
16. |f[y] - f[x] - g[x] * (y - x)| ≤ ((r1/r(r-bound(a) * k)) * |y - x|)
17. ((a * f[y]) - a * f[x] - (a * g[x]) * (y - x)) = (a * (f[y] - f[x] - g[x] * (y - x)))
18. x ∈ I
19. y ∈ I
20. |a| ≤ r(r-bound(a))
⊢ (|a| * |f[y] - f[x] - g[x] * (y - x)|) ≤ ((r1/r(k)) * |y - x|)
BY
{ (MoveToConcl (-1)
THEN MoveToConcl (-4)
THEN (GenConclTerm ⌜f[y] - f[x] - g[x] * (y - x)⌝⋅ THENA Auto)
THEN (GenConclTerm ⌜r-bound(a)⌝⋅ THENA Auto)
THEN (GenConclTerm ⌜y - x⌝⋅ THENA Auto)
THEN All Thin) }
1
1. a : ℝ
2. k : ℕ+
3. v : ℝ
4. v1 : ℕ+
5. v2 : ℝ
⊢ (|v| ≤ ((r1/r(v1 * k)) * |v2|))
⇒ (|a| ≤ r(v1))
⇒ ((|a| * |v|) ≤ ((r1/r(k)) * |v2|))
Latex:
Latex:
1. a : \mBbbR{}
2. I : Interval
3. f : I {}\mrightarrow{}\mBbbR{}
4. g : I {}\mrightarrow{}\mBbbR{}
5. k : \mBbbN{}\msupplus{}
6. n : \{n:\mBbbN{}\msupplus{}| icompact(i-approx(I;n)) \mwedge{} iproper(i-approx(I;n))\}
7. r(-r-bound(a)) \mleq{} a
8. a \mleq{} r(r-bound(a))
9. del : \mBbbR{}
10. r0 < del
11. x : \mBbbR{}
12. y : \mBbbR{}
13. x \mmember{} i-approx(I;n)
14. y \mmember{} i-approx(I;n)
15. |y - x| \mleq{} del
16. |f[y] - f[x] - g[x] * (y - x)| \mleq{} ((r1/r(r-bound(a) * k)) * |y - x|)
17. ((a * f[y]) - a * f[x] - (a * g[x]) * (y - x)) = (a * (f[y] - f[x] - g[x] * (y - x)))
18. x \mmember{} I
19. y \mmember{} I
20. |a| \mleq{} r(r-bound(a))
\mvdash{} (|a| * |f[y] - f[x] - g[x] * (y - x)|) \mleq{} ((r1/r(k)) * |y - x|)
By
Latex:
(MoveToConcl (-1)
THEN MoveToConcl (-4)
THEN (GenConclTerm \mkleeneopen{}f[y] - f[x] - g[x] * (y - x)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConclTerm \mkleeneopen{}r-bound(a)\mkleeneclose{}\mcdot{} THENA Auto)
THEN (GenConclTerm \mkleeneopen{}y - x\mkleeneclose{}\mcdot{} THENA Auto)
THEN All Thin)
Home
Index