Nuprl Lemma : derivative-rdiv-const
∀a:ℝ. (a ≠ r0 ⇒ (∀I:Interval. ∀f,f':I ⟶ℝ.  (λx.f'[x] = d(f[x])/dx on I ⇒ λx.(f'[x]/a) = d((f[x]/a))/dx on I)))
Proof
Definitions occuring in Statement : 
derivative: λz.g[z] = d(f[x])/dx on I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rdiv: (x/y), 
rneq: x ≠ y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rdiv: (x/y), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
rfun: I ⟶ℝ, 
so_apply: x[s], 
prop: ℙ, 
label: ...$L... t
Lemmas referenced : 
derivative-const-mul2, 
rinv_wf2, 
real_wf, 
i-member_wf, 
derivative_wf, 
rfun_wf, 
interval_wf, 
rneq_wf, 
int-to-real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isectElimination, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
lambdaEquality, 
applyEquality, 
setEquality, 
because_Cache, 
natural_numberEquality
Latex:
\mforall{}a:\mBbbR{}
    (a  \mneq{}  r0
    {}\mRightarrow{}  (\mforall{}I:Interval.  \mforall{}f,f':I  {}\mrightarrow{}\mBbbR{}.
                (\mlambda{}x.f'[x]  =  d(f[x])/dx  on  I  {}\mRightarrow{}  \mlambda{}x.(f'[x]/a)  =  d((f[x]/a))/dx  on  I)))
Date html generated:
2016_05_18-AM-10_13_18
Last ObjectModification:
2015_12_27-PM-10_58_35
Theory : reals
Home
Index