Step
*
1
2
1
2
1
1
of Lemma
derivative-rinv
1. k : ℕ+
2. M : ℕ+
3. fx : ℝ
4. fy : ℝ
5. gx : ℝ
6. gy : ℝ
7. e : ℝ
8. fx ≠ r0
9. fy ≠ r0
10. |fy - fx - gx * e| ≤ ((r1/r((2 * M * M) * k)) * |e|)
11. |fy - fx| ≤ (r1/r((2 * (M * M) * M * M) * k))
12. |gx| ≤ r(M)
13. |(r1/fx)| ≤ r(M)
14. |gy| ≤ r(M)
15. |(r1/fy)| ≤ r(M)
⊢ |(r1/fy) - (r1/fx) - (-(gx)/fx * fx) * e| ≤ ((r1/r(k)) * |e|)
BY
{ ((Assert fx * fx ≠ r0 BY
(OrRight THEN Auto THEN D 8 THEN nRMul ⌜fx⌝ 8⋅ THEN Auto))
THEN (Assert |(r1/fy) - (r1/fx) - (-(gx)/fx * fx) * e|
= ((|(r1/fx)| * |(r1/fy)|) * |fy - fx - (fy * (r1/fx)) * gx * e|) BY
((RW (AddrC [1] (RevLemmaC `rabs-rminus`)) 0 THENA Auto)
THEN (RWW "rabs-rmul<" 0 THENA Auto)
THEN nRNorm 0
THEN (BLemma `rabs_functionality` THEN Auto)
THEN BLemma `radd_functionality`
THEN Auto
THEN RepeatFor 2 (nRMul ⌜fx⌝ 0⋅)
THEN MoveToConcl (-1)
THEN (GenConclTerm ⌜fx * fx⌝⋅ THENA Auto)
THEN Auto
THEN nRNorm 0
THEN Auto))
) }
1
1. k : ℕ+
2. M : ℕ+
3. fx : ℝ
4. fy : ℝ
5. gx : ℝ
6. gy : ℝ
7. e : ℝ
8. fx ≠ r0
9. fy ≠ r0
10. |fy - fx - gx * e| ≤ ((r1/r((2 * M * M) * k)) * |e|)
11. |fy - fx| ≤ (r1/r((2 * (M * M) * M * M) * k))
12. |gx| ≤ r(M)
13. |(r1/fx)| ≤ r(M)
14. |gy| ≤ r(M)
15. |(r1/fy)| ≤ r(M)
16. fx * fx ≠ r0
17. |(r1/fy) - (r1/fx) - (-(gx)/fx * fx) * e| = ((|(r1/fx)| * |(r1/fy)|) * |fy - fx - (fy * (r1/fx)) * gx * e|)
⊢ |(r1/fy) - (r1/fx) - (-(gx)/fx * fx) * e| ≤ ((r1/r(k)) * |e|)
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. M : \mBbbN{}\msupplus{}
3. fx : \mBbbR{}
4. fy : \mBbbR{}
5. gx : \mBbbR{}
6. gy : \mBbbR{}
7. e : \mBbbR{}
8. fx \mneq{} r0
9. fy \mneq{} r0
10. |fy - fx - gx * e| \mleq{} ((r1/r((2 * M * M) * k)) * |e|)
11. |fy - fx| \mleq{} (r1/r((2 * (M * M) * M * M) * k))
12. |gx| \mleq{} r(M)
13. |(r1/fx)| \mleq{} r(M)
14. |gy| \mleq{} r(M)
15. |(r1/fy)| \mleq{} r(M)
\mvdash{} |(r1/fy) - (r1/fx) - (-(gx)/fx * fx) * e| \mleq{} ((r1/r(k)) * |e|)
By
Latex:
((Assert fx * fx \mneq{} r0 BY
(OrRight THEN Auto THEN D 8 THEN nRMul \mkleeneopen{}fx\mkleeneclose{} 8\mcdot{} THEN Auto))
THEN (Assert |(r1/fy) - (r1/fx) - (-(gx)/fx * fx) * e|
= ((|(r1/fx)| * |(r1/fy)|) * |fy - fx - (fy * (r1/fx)) * gx * e|) BY
((RW (AddrC [1] (RevLemmaC `rabs-rminus`)) 0 THENA Auto)
THEN (RWW "rabs-rmul<" 0 THENA Auto)
THEN nRNorm 0
THEN (BLemma `rabs\_functionality` THEN Auto)
THEN BLemma `radd\_functionality`
THEN Auto
THEN RepeatFor 2 (nRMul \mkleeneopen{}fx\mkleeneclose{} 0\mcdot{})
THEN MoveToConcl (-1)
THEN (GenConclTerm \mkleeneopen{}fx * fx\mkleeneclose{}\mcdot{} THENA Auto)
THEN Auto
THEN nRNorm 0
THEN Auto))
)
Home
Index