Nuprl Lemma : derivative-sub
∀I:Interval. ∀f1,f2,g1,g2:I ⟶ℝ.
  (λx.g1[x] = d(f1[x])/dx on I ⇒ λx.g2[x] = d(f2[x])/dx on I ⇒ λx.g1[x] - g2[x] = d(f1[x] - f2[x])/dx on I)
Proof
Definitions occuring in Statement : 
derivative: λz.g[z] = d(f[x])/dx on I, 
rfun: I ⟶ℝ, 
interval: Interval, 
rsub: x - y, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rsub: x - y, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s]
Lemmas referenced : 
derivative_wf, 
real_wf, 
i-member_wf, 
rfun_wf, 
interval_wf, 
rminus_wf, 
derivative-add, 
derivative-minus
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalRule, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
setEquality, 
hypothesis, 
because_Cache, 
independent_functionElimination, 
dependent_functionElimination
Latex:
\mforall{}I:Interval.  \mforall{}f1,f2,g1,g2:I  {}\mrightarrow{}\mBbbR{}.
    (\mlambda{}x.g1[x]  =  d(f1[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g2[x]  =  d(f2[x])/dx  on  I
    {}\mRightarrow{}  \mlambda{}x.g1[x]  -  g2[x]  =  d(f1[x]  -  f2[x])/dx  on  I)
Date html generated:
2016_05_18-AM-10_07_22
Last ObjectModification:
2015_12_27-PM-11_03_18
Theory : reals
Home
Index