Nuprl Lemma : discontinuous_wf
∀[f:ℝ ⟶ ℝ]. ∀[x:ℝ].  (discontinuous(f;x) ∈ ℙ)
Proof
Definitions occuring in Statement : 
discontinuous: discontinuous(f;x)
, 
real: ℝ
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
discontinuous: discontinuous(f;x)
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
real_wf, 
rless_wf, 
int-to-real_wf, 
all_wf, 
rabs_wf, 
rsub_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setEquality, 
hypothesis, 
natural_numberEquality, 
hypothesisEquality, 
lambdaEquality, 
lambdaFormation, 
setElimination, 
rename, 
because_Cache, 
productEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
functionEquality
Latex:
\mforall{}[f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].    (discontinuous(f;x)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_18-AM-11_13_42
Last ObjectModification:
2015_12_27-PM-10_39_12
Theory : reals
Home
Index