Nuprl Lemma : discontinuous_wf

[f:ℝ ⟶ ℝ]. ∀[x:ℝ].  (discontinuous(f;x) ∈ ℙ)


Proof




Definitions occuring in Statement :  discontinuous: discontinuous(f;x) real: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T discontinuous: discontinuous(f;x) prop: so_lambda: λ2x.t[x] all: x:A. B[x] and: P ∧ Q so_apply: x[s]
Lemmas referenced :  exists_wf real_wf rless_wf int-to-real_wf all_wf rabs_wf rsub_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin setEquality hypothesis natural_numberEquality hypothesisEquality lambdaEquality lambdaFormation setElimination rename because_Cache productEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality functionEquality

Latex:
\mforall{}[f:\mBbbR{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[x:\mBbbR{}].    (discontinuous(f;x)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-11_13_42
Last ObjectModification: 2015_12_27-PM-10_39_12

Theory : reals


Home Index