Nuprl Lemma : diverges_wf

[x:ℕ ⟶ ℝ]. (n.x[n]↑ ∈ ℙ)


Proof




Definitions occuring in Statement :  diverges: n.x[n]↑ real: nat: uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T diverges: n.x[n]↑ so_lambda: λ2x.t[x] prop: and: P ∧ Q nat: so_apply: x[s] exists: x:A. B[x] all: x:A. B[x]
Lemmas referenced :  exists_wf real_wf rless_wf int-to-real_wf all_wf nat_wf le_wf rleq_wf rabs_wf rsub_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis lambdaEquality productEquality natural_numberEquality hypothesisEquality because_Cache setElimination rename applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  (n.x[n]\muparrow{}  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-07_36_12
Last ObjectModification: 2015_12_28-AM-00_57_04

Theory : reals


Home Index