Nuprl Lemma : dyadic-rationals-dense

dense-in-interval((-∞, ∞);λr.∃n:ℤ. ∃m:ℕ+(r (r(n)/r(2^m))))


Proof




Definitions occuring in Statement :  dense-in-interval: dense-in-interval(I;X) riiint: (-∞, ∞) rdiv: (x/y) req: y int-to-real: r(n) exp: i^n nat_plus: + exists: x:A. B[x] lambda: λx.A[x] natural_number: $n int:
Definitions unfolded in proof :  dense-in-interval: dense-in-interval(I;X) all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: exists: x:A. B[x] int_nzero: -o nequal: a ≠ b ∈  not: ¬A sq_type: SQType(T) false: False uiff: uiff(P;Q) nat: nat_plus: + rless: x < y sq_exists: x:A [B[x]] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) int_upper: {i...} subtype_rel: A ⊆B rdiv: (x/y) req_int_terms: t1 ≡ t2 real: so_lambda: λ2x.t[x] so_apply: x[s] rge: x ≥ y rev_uimplies: rev_uimplies(P;Q) cand: c∧ B rational-approx: (x within 1/n) subtract: m

Latex:
dense-in-interval((-\minfty{},  \minfty{});\mlambda{}r.\mexists{}n:\mBbbZ{}.  \mexists{}m:\mBbbN{}\msupplus{}.  (r  =  (r(n)/r(2\^{}m))))



Date html generated: 2020_05_20-PM-00_12_07
Last ObjectModification: 2020_01_06-PM-00_23_01

Theory : reals


Home Index