Nuprl Lemma : epsilon/n-lemma

[k,n:ℕ+].  ((r(n) (r1/r(n k))) ≤ (r1/r(k)))


Proof




Definitions occuring in Statement :  rdiv: (x/y) rleq: x ≤ y rmul: b int-to-real: r(n) nat_plus: + uall: [x:A]. B[x] multiply: m natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rneq: x ≠ y guard: {T} or: P ∨ Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B nat_plus: + prop: decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False nequal: a ≠ b ∈  subtype_rel: A ⊆B rdiv: (x/y) req_int_terms: t1 ≡ t2

Latex:
\mforall{}[k,n:\mBbbN{}\msupplus{}].    ((r(n)  *  (r1/r(n  *  k)))  \mleq{}  (r1/r(k)))



Date html generated: 2020_05_20-AM-11_06_38
Last ObjectModification: 2019_12_12-AM-10_32_52

Theory : reals


Home Index