Nuprl Lemma : extensional-real-to-bool-constant

f:ℝ ⟶ 𝔹. ∀x,y:ℝ.  supposing ∀x,y:ℝ.  ((x y)  y)


Proof




Definitions occuring in Statement :  req: y real: bool: 𝔹 uimplies: supposing a all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q true: True false: False uall: [x:A]. B[x] prop: so_lambda: λ2x.t[x] guard: {T} sq_type: SQType(T) cand: c∧ B and: P ∧ Q top: Top bfalse: ff btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) iff: ⇐⇒ Q

Latex:
\mforall{}f:\mBbbR{}  {}\mrightarrow{}  \mBbbB{}.  \mforall{}x,y:\mBbbR{}.    f  x  =  f  y  supposing  \mforall{}x,y:\mBbbR{}.    ((x  =  y)  {}\mRightarrow{}  f  x  =  f  y)



Date html generated: 2020_05_20-PM-00_05_12
Last ObjectModification: 2020_01_09-PM-06_15_14

Theory : reals


Home Index