Step
*
of Lemma
finite-subcover-implies-m-TB
No Annotations
∀[X:Type]
∀d:metric(X)
((∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ]. (m-open-cover(X;d;I;i,x.A[i;x])
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x])))
⇒ m-TB(X;d))
BY
{ (Auto THEN RWO "m-TB-iff" 0 THEN Auto) }
1
1. [X] : Type
2. d : metric(X)
3. ∀[I:Type]. ∀[A:I ⟶ X ⟶ ℙ]. (m-open-cover(X;d;I;i,x.A[i;x])
⇒ (∃n:ℕ+. ∃L:ℕn ⟶ I. ∀x:X. ∃j:ℕn. A[L j;x]))
4. k : ℕ
⊢ ∃n:ℕ+. ∃xs:ℕn ⟶ X. ∀x:X. ∃i:ℕn. (mdist(d;x;xs i) ≤ (r1/r(k + 1)))
Latex:
Latex:
No Annotations
\mforall{}[X:Type]
\mforall{}d:metric(X)
((\mforall{}[I:Type]. \mforall{}[A:I {}\mrightarrow{} X {}\mrightarrow{} \mBbbP{}].
(m-open-cover(X;d;I;i,x.A[i;x]) {}\mRightarrow{} (\mexists{}n:\mBbbN{}\msupplus{}. \mexists{}L:\mBbbN{}n {}\mrightarrow{} I. \mforall{}x:X. \mexists{}j:\mBbbN{}n. A[L j;x])))
{}\mRightarrow{} m-TB(X;d))
By
Latex:
(Auto THEN RWO "m-TB-iff" 0 THEN Auto)
Home
Index