Nuprl Lemma : frs-non-dec-sum

p:ℝ List. (1 < ||p||  frs-non-dec(p)  {p[i 1] p[i] 0≤i≤||p|| 2} (last(p) p[0])))


Proof




Definitions occuring in Statement :  frs-non-dec: frs-non-dec(L) rsum: Σ{x[k] n≤k≤m} rsub: y req: y real: last: last(L) select: L[n] length: ||as|| list: List less_than: a < b all: x:A. B[x] implies:  Q subtract: m add: m natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: guard: {T} or: P ∨ Q select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] subtract: m less_than: a < b squash: T less_than': less_than'(a;b) cons: [a b] le: A ≤ B so_lambda: λ2x.t[x] int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) so_apply: x[s] assert: b ifthenelse: if then else fi  btrue: tt bfalse: ff colength: colength(L) sq_type: SQType(T) subtype_rel: A ⊆B length: ||as|| list_ind: list_ind uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) frs-non-dec: frs-non-dec(L) true: True cand: c∧ B iff: ⇐⇒ Q pointwise-req: x[k] y[k] for k ∈ [n,m] rev_implies:  Q req_int_terms: t1 ≡ t2 last: last(L) bool: 𝔹 unit: Unit bnot: ¬bb eq_int: (i =z j) lt_int: i <j

Latex:
\mforall{}p:\mBbbR{}  List.  (1  <  ||p||  {}\mRightarrow{}  frs-non-dec(p)  {}\mRightarrow{}  (\mSigma{}\{p[i  +  1]  -  p[i]  |  0\mleq{}i\mleq{}||p||  -  2\}  =  (last(p)  -  p[0])))



Date html generated: 2020_05_20-AM-11_36_19
Last ObjectModification: 2020_01_02-PM-01_59_58

Theory : reals


Home Index