Step
*
1
1
1
of Lemma
fun-converges-iff-cauchy
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : I ⟶ℝ
4. a : {a:ℕ+| icompact(i-approx(I;a))}
5. k : ℕ+
6. N : ℕ+
7. ∀x:{x:ℝ| x ∈ i-approx(I;a)} . ∀n:{N...}. (|f[n;x] - g x| ≤ (r1/r(2 * k)))
8. x : ℝ
9. x ∈ i-approx(I;a)
10. ∀n:{N...}. (|f[n;x] - g x| ≤ (r1/r(2 * k)))
11. n : {N...}
12. |f[n;x] - g x| ≤ (r1/r(2 * k))
13. x ∈ I
14. m : {N...}
⊢ ((r1/r(2 * k)) + |(g x) - f[m;x]|) ≤ (r1/r(k))
BY
{ (RWO "rabs-difference-symmetry" 0 THENA Auto) }
1
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. g : I ⟶ℝ
4. a : {a:ℕ+| icompact(i-approx(I;a))}
5. k : ℕ+
6. N : ℕ+
7. ∀x:{x:ℝ| x ∈ i-approx(I;a)} . ∀n:{N...}. (|f[n;x] - g x| ≤ (r1/r(2 * k)))
8. x : ℝ
9. x ∈ i-approx(I;a)
10. ∀n:{N...}. (|f[n;x] - g x| ≤ (r1/r(2 * k)))
11. n : {N...}
12. |f[n;x] - g x| ≤ (r1/r(2 * k))
13. x ∈ I
14. m : {N...}
⊢ ((r1/r(2 * k)) + |f[m;x] - g x|) ≤ (r1/r(k))
Latex:
Latex:
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. g : I {}\mrightarrow{}\mBbbR{}
4. a : \{a:\mBbbN{}\msupplus{}| icompact(i-approx(I;a))\}
5. k : \mBbbN{}\msupplus{}
6. N : \mBbbN{}\msupplus{}
7. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;a)\} . \mforall{}n:\{N...\}. (|f[n;x] - g x| \mleq{} (r1/r(2 * k)))
8. x : \mBbbR{}
9. x \mmember{} i-approx(I;a)
10. \mforall{}n:\{N...\}. (|f[n;x] - g x| \mleq{} (r1/r(2 * k)))
11. n : \{N...\}
12. |f[n;x] - g x| \mleq{} (r1/r(2 * k))
13. x \mmember{} I
14. m : \{N...\}
\mvdash{} ((r1/r(2 * k)) + |(g x) - f[m;x]|) \mleq{} (r1/r(k))
By
Latex:
(RWO "rabs-difference-symmetry" 0 THENA Auto)
Home
Index