Step
*
2
1
1
of Lemma
fun-converges-iff-cauchy
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. λn.f[n;x] is cauchy for x ∈ I
4. ∀x:{x:ℝ| x ∈ I} . ∃y:ℝ. lim n→∞.f[n;x] = y
5. g : x:{x:ℝ| x ∈ I} ⟶ ℝ
6. ∀x:{x:ℝ| x ∈ I} . lim n→∞.f[n;x] = g x
⊢ lim n→∞.f[n;x] = λy.g y for x ∈ I
BY
{ (D 0 THEN Auto THEN (With ⌜m⌝ (D 3)⋅ THENA Auto)) }
1
1. I : Interval
2. f : ℕ ⟶ I ⟶ℝ
3. ∀x:{x:ℝ| x ∈ I} . ∃y:ℝ. lim n→∞.f[n;x] = y
4. g : x:{x:ℝ| x ∈ I} ⟶ ℝ
5. ∀x:{x:ℝ| x ∈ I} . lim n→∞.f[n;x] = g x
6. m : {m:ℕ+| icompact(i-approx(I;m))}
7. k : ℕ+
8. ∀k:ℕ+. ∃N:ℕ+. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n,m:{N...}. (|f[n;x] - f[m;x]| ≤ (r1/r(k)))
⊢ ∃N:ℕ+. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n:{N...}. (|f[n;x] - g x| ≤ (r1/r(k)))
Latex:
Latex:
1. I : Interval
2. f : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. \mlambda{}n.f[n;x] is cauchy for x \mmember{} I
4. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . \mexists{}y:\mBbbR{}. lim n\mrightarrow{}\minfty{}.f[n;x] = y
5. g : x:\{x:\mBbbR{}| x \mmember{} I\} {}\mrightarrow{} \mBbbR{}
6. \mforall{}x:\{x:\mBbbR{}| x \mmember{} I\} . lim n\mrightarrow{}\minfty{}.f[n;x] = g x
\mvdash{} lim n\mrightarrow{}\minfty{}.f[n;x] = \mlambda{}y.g y for x \mmember{} I
By
Latex:
(D 0 THEN Auto THEN (With \mkleeneopen{}m\mkleeneclose{} (D 3)\mcdot{} THENA Auto))
Home
Index