Step
*
1
1
of Lemma
fun-converges-to-rsub
1. I : Interval
2. f1 : ℕ ⟶ I ⟶ℝ
3. f2 : ℕ ⟶ I ⟶ℝ
4. g1 : I ⟶ℝ
5. g2 : I ⟶ℝ
6. m : {m:ℕ+| icompact(i-approx(I;m))}
7. k : ℕ+
8. N1 : ℕ+
9. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n:{N1...}. (|f1[n;x] - g1[x]| ≤ (r1/r(2 * k)))
10. N : ℕ+
11. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n:{N...}. (|f2[n;x] - g2[x]| ≤ (r1/r(2 * k)))
12. i-approx(I;m) ⊆ I
⊢ ∃N:ℕ+. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n:{N...}. (|f1[n;x] - f2[n;x] - g1[x] - g2[x]| ≤ (r1/r(k)))
BY
{ (D 0 With ⌜imax(N;N1)⌝ THEN Auto) }
1
1. I : Interval
2. f1 : ℕ ⟶ I ⟶ℝ
3. f2 : ℕ ⟶ I ⟶ℝ
4. g1 : I ⟶ℝ
5. g2 : I ⟶ℝ
6. m : {m:ℕ+| icompact(i-approx(I;m))}
7. k : ℕ+
8. N1 : ℕ+
9. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n:{N1...}. (|f1[n;x] - g1[x]| ≤ (r1/r(2 * k)))
10. N : ℕ+
11. ∀x:{x:ℝ| x ∈ i-approx(I;m)} . ∀n:{N...}. (|f2[n;x] - g2[x]| ≤ (r1/r(2 * k)))
12. i-approx(I;m) ⊆ I
13. x : {x:ℝ| x ∈ i-approx(I;m)}
14. n : {imax(N;N1)...}
⊢ |f1[n;x] - f2[n;x] - g1[x] - g2[x]| ≤ (r1/r(k))
Latex:
Latex:
1. I : Interval
2. f1 : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
3. f2 : \mBbbN{} {}\mrightarrow{} I {}\mrightarrow{}\mBbbR{}
4. g1 : I {}\mrightarrow{}\mBbbR{}
5. g2 : I {}\mrightarrow{}\mBbbR{}
6. m : \{m:\mBbbN{}\msupplus{}| icompact(i-approx(I;m))\}
7. k : \mBbbN{}\msupplus{}
8. N1 : \mBbbN{}\msupplus{}
9. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;m)\} . \mforall{}n:\{N1...\}. (|f1[n;x] - g1[x]| \mleq{} (r1/r(2 * k)))
10. N : \mBbbN{}\msupplus{}
11. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;m)\} . \mforall{}n:\{N...\}. (|f2[n;x] - g2[x]| \mleq{} (r1/r(2 * k)))
12. i-approx(I;m) \msubseteq{} I
\mvdash{} \mexists{}N:\mBbbN{}\msupplus{}. \mforall{}x:\{x:\mBbbR{}| x \mmember{} i-approx(I;m)\} . \mforall{}n:\{N...\}. (|f1[n;x] - f2[n;x] - g1[x] - g2[x]| \mleq{} (r1/r(k)))
By
Latex:
(D 0 With \mkleeneopen{}imax(N;N1)\mkleeneclose{} THEN Auto)
Home
Index