Nuprl Lemma : fun-series-sum_wf
∀[I:Interval]. ∀[f:ℕ ⟶ I ⟶ℝ].  ∀cnv:Σn.f[n;x]↓ for x ∈ I. ∀z:{z:ℝ| z ∈ I} .  (Σn.f[n](z) ∈ ℝ)
Proof
Definitions occuring in Statement : 
fun-series-sum: Σn.f[n](z)
, 
fun-series-converges: Σn.f[n; x]↓ for x ∈ I
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
fun-series-sum: Σn.f[n](z)
, 
fun-series-converges: Σn.f[n; x]↓ for x ∈ I
, 
fun-converges: λn.f[n; x]↓ for x ∈ I)
, 
exists: ∃x:A. B[x]
, 
pi1: fst(t)
, 
rfun: I ⟶ℝ
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x y.t[x; y]
, 
label: ...$L... t
, 
so_apply: x[s1;s2]
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
i-member_wf, 
set_wf, 
real_wf, 
fun-series-converges_wf, 
rfun_wf, 
nat_wf, 
interval_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
setElimination, 
thin, 
rename, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
lambdaEquality, 
setEquality, 
dependent_functionElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
functionEquality, 
isect_memberEquality
Latex:
\mforall{}[I:Interval].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].    \mforall{}cnv:\mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I.  \mforall{}z:\{z:\mBbbR{}|  z  \mmember{}  I\}  .    (\mSigma{}n.f[n](z)  \mmember{}  \mBbbR{})
Date html generated:
2016_05_18-AM-09_55_35
Last ObjectModification:
2015_12_27-PM-11_07_38
Theory : reals
Home
Index