Nuprl Lemma : fun-series-sum_wf

[I:Interval]. ∀[f:ℕ ⟶ I ⟶ℝ].  ∀cnv:Σn.f[n;x]↓ for x ∈ I. ∀z:{z:ℝz ∈ I} .  n.f[n](z) ∈ ℝ)


Proof




Definitions occuring in Statement :  fun-series-sum: Σn.f[n](z) fun-series-converges: Σn.f[n; x]↓ for x ∈ I rfun: I ⟶ℝ i-member: r ∈ I interval: Interval real: nat: uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] fun-series-sum: Σn.f[n](z) fun-series-converges: Σn.f[n; x]↓ for x ∈ I fun-converges: λn.f[n; x]↓ for x ∈ I) exists: x:A. B[x] pi1: fst(t) rfun: I ⟶ℝ prop: so_lambda: λ2x.t[x] so_apply: x[s] so_lambda: λ2y.t[x; y] label: ...$L... t so_apply: x[s1;s2] subtype_rel: A ⊆B
Lemmas referenced :  i-member_wf set_wf real_wf fun-series-converges_wf rfun_wf nat_wf interval_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation setElimination thin rename sqequalRule sqequalHypSubstitution productElimination applyEquality hypothesisEquality dependent_set_memberEquality hypothesis lemma_by_obid isectElimination lambdaEquality setEquality dependent_functionElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache functionEquality isect_memberEquality

Latex:
\mforall{}[I:Interval].  \mforall{}[f:\mBbbN{}  {}\mrightarrow{}  I  {}\mrightarrow{}\mBbbR{}].    \mforall{}cnv:\mSigma{}n.f[n;x]\mdownarrow{}  for  x  \mmember{}  I.  \mforall{}z:\{z:\mBbbR{}|  z  \mmember{}  I\}  .    (\mSigma{}n.f[n](z)  \mmember{}  \mBbbR{})



Date html generated: 2016_05_18-AM-09_55_35
Last ObjectModification: 2015_12_27-PM-11_07_38

Theory : reals


Home Index