Step
*
1
3
of Lemma
harmonic-series-diverges
1. r0 < (r1/r(2))
2. k : ℕ
3. k ≤ (2^(k + 1) - 1)
4. k ≤ (2^k - 1)
⊢ (r1/r(2)) ≤ |Σ{(r1/r(i + 1)) | 0≤i≤2^(k + 1) - 1} - Σ{(r1/r(i + 1)) | 0≤i≤2^k - 1}|
BY
{ Assert ⌜(Σ{(r1/r(i + 1)) | 0≤i≤2^(k + 1) - 1} - Σ{(r1/r(i + 1)) | 0≤i≤2^k - 1})
          = Σ{(r1/r(i + 1)) | 2^k≤i≤2^(k + 1) - 1}⌝⋅ }
1
.....assertion..... 
1. r0 < (r1/r(2))
2. k : ℕ
3. k ≤ (2^(k + 1) - 1)
4. k ≤ (2^k - 1)
⊢ (Σ{(r1/r(i + 1)) | 0≤i≤2^(k + 1) - 1} - Σ{(r1/r(i + 1)) | 0≤i≤2^k - 1}) = Σ{(r1/r(i + 1)) | 2^k≤i≤2^(k + 1) - 1}
2
1. r0 < (r1/r(2))
2. k : ℕ
3. k ≤ (2^(k + 1) - 1)
4. k ≤ (2^k - 1)
5. (Σ{(r1/r(i + 1)) | 0≤i≤2^(k + 1) - 1} - Σ{(r1/r(i + 1)) | 0≤i≤2^k - 1}) = Σ{(r1/r(i + 1)) | 2^k≤i≤2^(k + 1) - 1}
⊢ (r1/r(2)) ≤ |Σ{(r1/r(i + 1)) | 0≤i≤2^(k + 1) - 1} - Σ{(r1/r(i + 1)) | 0≤i≤2^k - 1}|
Latex:
Latex:
1.  r0  <  (r1/r(2))
2.  k  :  \mBbbN{}
3.  k  \mleq{}  (2\^{}(k  +  1)  -  1)
4.  k  \mleq{}  (2\^{}k  -  1)
\mvdash{}  (r1/r(2))  \mleq{}  |\mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}(k  +  1)  -  1\}  -  \mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}k  -  1\}|
By
Latex:
Assert  \mkleeneopen{}(\mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}(k  +  1)  -  1\}  -  \mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}k  -  1\})
                =  \mSigma{}\{(r1/r(i  +  1))  |  2\^{}k\mleq{}i\mleq{}2\^{}(k  +  1)  -  1\}\mkleeneclose{}\mcdot{}
Home
Index