Step * 1 3 of Lemma harmonic-series-diverges


1. r0 < (r1/r(2))
2. : ℕ
3. k ≤ (2^(k 1) 1)
4. k ≤ (2^k 1)
⊢ (r1/r(2)) ≤ {(r1/r(i 1)) 0≤i≤2^(k 1) 1} - Σ{(r1/r(i 1)) 0≤i≤2^k 1}|
BY
Assert ⌜{(r1/r(i 1)) 0≤i≤2^(k 1) 1} - Σ{(r1/r(i 1)) 0≤i≤2^k 1})
          = Σ{(r1/r(i 1)) 2^k≤i≤2^(k 1) 1}⌝⋅ }

1
.....assertion..... 
1. r0 < (r1/r(2))
2. : ℕ
3. k ≤ (2^(k 1) 1)
4. k ≤ (2^k 1)
⊢ {(r1/r(i 1)) 0≤i≤2^(k 1) 1} - Σ{(r1/r(i 1)) 0≤i≤2^k 1}) = Σ{(r1/r(i 1)) 2^k≤i≤2^(k 1) 1}

2
1. r0 < (r1/r(2))
2. : ℕ
3. k ≤ (2^(k 1) 1)
4. k ≤ (2^k 1)
5. {(r1/r(i 1)) 0≤i≤2^(k 1) 1} - Σ{(r1/r(i 1)) 0≤i≤2^k 1}) = Σ{(r1/r(i 1)) 2^k≤i≤2^(k 1) 1}
⊢ (r1/r(2)) ≤ {(r1/r(i 1)) 0≤i≤2^(k 1) 1} - Σ{(r1/r(i 1)) 0≤i≤2^k 1}|


Latex:


Latex:

1.  r0  <  (r1/r(2))
2.  k  :  \mBbbN{}
3.  k  \mleq{}  (2\^{}(k  +  1)  -  1)
4.  k  \mleq{}  (2\^{}k  -  1)
\mvdash{}  (r1/r(2))  \mleq{}  |\mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}(k  +  1)  -  1\}  -  \mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}k  -  1\}|


By


Latex:
Assert  \mkleeneopen{}(\mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}(k  +  1)  -  1\}  -  \mSigma{}\{(r1/r(i  +  1))  |  0\mleq{}i\mleq{}2\^{}k  -  1\})
                =  \mSigma{}\{(r1/r(i  +  1))  |  2\^{}k\mleq{}i\mleq{}2\^{}(k  +  1)  -  1\}\mkleeneclose{}\mcdot{}




Home Index