Nuprl Lemma : homeomorphic_functionality

[X,Y,X',Y':Type].
  (∀[dX:metric(X)]. ∀[dY:metric(Y)].  homeomorphic(X;dX;Y;dY) ≡ homeomorphic(X';dX;Y';dY)) supposing (X ≡ X' and Y ≡ Y')


Proof




Definitions occuring in Statement :  homeomorphic: homeomorphic(X;dX;Y;dY) metric: metric(X) ext-eq: A ≡ B uimplies: supposing a uall: [x:A]. B[x] universe: Type
Definitions unfolded in proof :  ext-eq: A ≡ B uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q member: t ∈ T prop: subtype_rel: A ⊆B sq_stable: SqStable(P) implies:  Q homeomorphic: homeomorphic(X;dX;Y;dY) sq_exists: x:A [B[x]] exists: x:A. B[x] mfun: FUN(X ⟶ Y) so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] is-mfun: f:FUN(X;Y) cand: c∧ B squash: T guard: {T}

Latex:
\mforall{}[X,Y,X',Y':Type].
    (\mforall{}[dX:metric(X)].  \mforall{}[dY:metric(Y)].
          homeomorphic(X;dX;Y;dY)  \mequiv{}  homeomorphic(X';dX;Y';dY))  supposing 
          (X  \mequiv{}  X'  and 
          Y  \mequiv{}  Y')



Date html generated: 2020_05_20-AM-11_41_13
Last ObjectModification: 2019_11_11-PM-05_09_11

Theory : reals


Home Index