Nuprl Lemma : i-approx-containing
∀I:Interval. ∀x:ℝ.  ((x ∈ I) 
⇒ (∃m:ℕ+. (icompact(i-approx(I;m)) ∧ (x ∈ i-approx(I;m)))))
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
i-approx: i-approx(I;n)
, 
i-member: r ∈ I
, 
interval: Interval
, 
real: ℝ
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
exists: ∃x:A. B[x]
, 
icompact: icompact(I)
, 
i-nonvoid: i-nonvoid(I)
Lemmas referenced : 
i-member_wf, 
real_wf, 
interval_wf, 
i-approx-closed, 
i-approx-finite, 
icompact_wf, 
i-approx_wf, 
i-approx-containing2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_pairFormation, 
productElimination, 
dependent_pairFormation, 
dependent_functionElimination, 
because_Cache, 
productEquality, 
independent_functionElimination
Latex:
\mforall{}I:Interval.  \mforall{}x:\mBbbR{}.    ((x  \mmember{}  I)  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}\msupplus{}.  (icompact(i-approx(I;m))  \mwedge{}  (x  \mmember{}  i-approx(I;m)))))
Date html generated:
2016_10_26-AM-09_31_39
Last ObjectModification:
2016_08_27-PM-01_42_31
Theory : reals
Home
Index