Nuprl Lemma : i-approx-containing

I:Interval. ∀x:ℝ.  ((x ∈ I)  (∃m:ℕ+(icompact(i-approx(I;m)) ∧ (x ∈ i-approx(I;m)))))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] and: P ∧ Q cand: c∧ B exists: x:A. B[x] icompact: icompact(I) i-nonvoid: i-nonvoid(I)
Lemmas referenced :  i-member_wf real_wf interval_wf i-approx-closed i-approx-finite icompact_wf i-approx_wf i-approx-containing2
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_pairFormation productElimination dependent_pairFormation dependent_functionElimination because_Cache productEquality independent_functionElimination

Latex:
\mforall{}I:Interval.  \mforall{}x:\mBbbR{}.    ((x  \mmember{}  I)  {}\mRightarrow{}  (\mexists{}m:\mBbbN{}\msupplus{}.  (icompact(i-approx(I;m))  \mwedge{}  (x  \mmember{}  i-approx(I;m)))))



Date html generated: 2016_10_26-AM-09_31_39
Last ObjectModification: 2016_08_27-PM-01_42_31

Theory : reals


Home Index