Nuprl Lemma : i-member-compact

I:Interval. (icompact(I)  (∀r:ℝ(r ∈ ⇐⇒ left-endpoint(I)≤r≤right-endpoint(I))))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-member: r ∈ I right-endpoint: right-endpoint(I) left-endpoint: left-endpoint(I) interval: Interval rbetween: x≤y≤z real: all: x:A. B[x] iff: ⇐⇒ Q implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T implies:  Q prop: uall: [x:A]. B[x] icompact: icompact(I) and: P ∧ Q
Lemmas referenced :  i-member-finite-closed icompact_wf interval_wf
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination isectElimination productElimination

Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (r  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  left-endpoint(I)\mleq{}r\mleq{}right-endpoint(I))))



Date html generated: 2016_05_18-AM-08_47_30
Last ObjectModification: 2015_12_27-PM-11_46_17

Theory : reals


Home Index