Nuprl Lemma : i-member-compact
∀I:Interval. (icompact(I) 
⇒ (∀r:ℝ. (r ∈ I 
⇐⇒ left-endpoint(I)≤r≤right-endpoint(I))))
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
right-endpoint: right-endpoint(I)
, 
left-endpoint: left-endpoint(I)
, 
interval: Interval
, 
rbetween: x≤y≤z
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
icompact: icompact(I)
, 
and: P ∧ Q
Lemmas referenced : 
i-member-finite-closed, 
icompact_wf, 
interval_wf
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
isectElimination, 
productElimination
Latex:
\mforall{}I:Interval.  (icompact(I)  {}\mRightarrow{}  (\mforall{}r:\mBbbR{}.  (r  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  left-endpoint(I)\mleq{}r\mleq{}right-endpoint(I))))
Date html generated:
2016_05_18-AM-08_47_30
Last ObjectModification:
2015_12_27-PM-11_46_17
Theory : reals
Home
Index