Nuprl Lemma : i-member-iff

I:Interval. ∀r:ℝ.  (r ∈ ⇐⇒ ∃n:ℕ+(r ∈ i-approx(I;n)))


Proof




Definitions occuring in Statement :  i-approx: i-approx(I;n) i-member: r ∈ I interval: Interval real: nat_plus: + all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] member: t ∈ T implies:  Q and: P ∧ Q interval: Interval i-approx: i-approx(I;n) top: Top i-member: r ∈ I iff: ⇐⇒ Q exists: x:A. B[x] cand: c∧ B prop: rev_implies:  Q nat_plus: + uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y guard: {T} or: P ∨ Q decidable: Dec(P) true: True uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 le: A ≤ B rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y

Latex:
\mforall{}I:Interval.  \mforall{}r:\mBbbR{}.    (r  \mmember{}  I  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}\msupplus{}.  (r  \mmember{}  i-approx(I;n)))



Date html generated: 2020_05_20-AM-11_32_02
Last ObjectModification: 2019_12_07-PM-04_20_04

Theory : reals


Home Index