Step
*
8
of Lemma
i-member-implies
1. y : Top
2. y1 : ℝ
3. r : ℝ
4. b : ℕ+
5. r(b) < r(b + 1)
6. r(-(b + 1)) < r(-b)
7. r(-b) ≤ r
8. r ≤ r(b)
9. m : ℕ+
10. r ≤ (y1 - (r1/r(m)))
⊢ ∃n,M:ℕ+
(((r(-n) ≤ r) ∧ (r ≤ (y1 - (r1/r(n)))))
∧ (∀y@0:{y@0:ℝ| y@0 < y1}
((((r - (r1/r(M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(M)))))
⇒ ((r(-n) ≤ y@0) ∧ (y@0 ≤ (y1 - (r1/r(n)))))))
∧ (((False ∧ True)
⇒ (case ⊥ of inl(a) => a | inr(a) => a < y1))
⇒ (True ∧ True)
⇒ (r(-n) < (y1 - (r1/r(n))))))
BY
{ (Assert ∃M:ℕ+. ((r ≤ (y1 - (r1/r(M)))) ∧ (r(-M) ≤ r)) BY
((Assert (m ≤ imax(m;b)) ∧ (b ≤ imax(m;b)) BY
Auto)
THEN (Assert ((r1/r(imax(m;b))) ≤ (r1/r(m))) ∧ (r(-imax(m;b)) ≤ r(-b)) BY
Auto)
THEN D 0 With ⌜imax(m;b)⌝
THEN Auto
THEN RWO "10" 0
THEN Auto)) }
1
1. y : Top
2. y1 : ℝ
3. r : ℝ
4. b : ℕ+
5. r(b) < r(b + 1)
6. r(-(b + 1)) < r(-b)
7. r(-b) ≤ r
8. r ≤ r(b)
9. m : ℕ+
10. r ≤ (y1 - (r1/r(m)))
11. ∃M:ℕ+. ((r ≤ (y1 - (r1/r(M)))) ∧ (r(-M) ≤ r))
⊢ ∃n,M:ℕ+
(((r(-n) ≤ r) ∧ (r ≤ (y1 - (r1/r(n)))))
∧ (∀y@0:{y@0:ℝ| y@0 < y1}
((((r - (r1/r(M))) ≤ y@0) ∧ (y@0 ≤ (r + (r1/r(M)))))
⇒ ((r(-n) ≤ y@0) ∧ (y@0 ≤ (y1 - (r1/r(n)))))))
∧ (((False ∧ True)
⇒ (case ⊥ of inl(a) => a | inr(a) => a < y1))
⇒ (True ∧ True)
⇒ (r(-n) < (y1 - (r1/r(n))))))
Latex:
Latex:
1. y : Top
2. y1 : \mBbbR{}
3. r : \mBbbR{}
4. b : \mBbbN{}\msupplus{}
5. r(b) < r(b + 1)
6. r(-(b + 1)) < r(-b)
7. r(-b) \mleq{} r
8. r \mleq{} r(b)
9. m : \mBbbN{}\msupplus{}
10. r \mleq{} (y1 - (r1/r(m)))
\mvdash{} \mexists{}n,M:\mBbbN{}\msupplus{}
(((r(-n) \mleq{} r) \mwedge{} (r \mleq{} (y1 - (r1/r(n)))))
\mwedge{} (\mforall{}y@0:\{y@0:\mBbbR{}| y@0 < y1\}
((((r - (r1/r(M))) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (r + (r1/r(M)))))
{}\mRightarrow{} ((r(-n) \mleq{} y@0) \mwedge{} (y@0 \mleq{} (y1 - (r1/r(n)))))))
\mwedge{} (((False \mwedge{} True) {}\mRightarrow{} (case \mbot{} of inl(a) => a | inr(a) => a < y1))
{}\mRightarrow{} (True \mwedge{} True)
{}\mRightarrow{} (r(-n) < (y1 - (r1/r(n))))))
By
Latex:
(Assert \mexists{}M:\mBbbN{}\msupplus{}. ((r \mleq{} (y1 - (r1/r(M)))) \mwedge{} (r(-M) \mleq{} r)) BY
((Assert (m \mleq{} imax(m;b)) \mwedge{} (b \mleq{} imax(m;b)) BY
Auto)
THEN (Assert ((r1/r(imax(m;b))) \mleq{} (r1/r(m))) \mwedge{} (r(-imax(m;b)) \mleq{} r(-b)) BY
Auto)
THEN D 0 With \mkleeneopen{}imax(m;b)\mkleeneclose{}
THEN Auto
THEN RWO "10" 0
THEN Auto))
Home
Index