Step
*
1
1
1
of Lemma
i-member-proper-iff
1. u : ℝ
2. v : ℝ
3. r : ℝ
4. b : {2...}
5. r(-b) < r
6. r < r(b)
7. u ≤ r
8. m : ℕ+
9. r ≤ (v - (r1/r(m)))
10. u < v
11. ∃k:ℕ+. (u < (v - (r1/r(k))))
⊢ ∃n:ℕ+. (iproper([u, v - (r1/r(n))]) ∧ (u ≤ r) ∧ (r ≤ (v - (r1/r(n)))))
BY
{ (D -1
THEN (Assert ∃N:ℕ+. (((v - (r1/r(k))) ≤ (v - (r1/r(N)))) ∧ ((v - (r1/r(m))) ≤ (v - (r1/r(N))))) BY
(With ⌜imax(k;m)⌝ (D 0)⋅
THEN Auto
THEN Repeat ((RWO "imax_unfold" 0 THEN Auto))
THEN AutoSplit
THEN nRAdd ⌜-(v)⌝ 0⋅
THEN Auto
THEN RWW "rminus-rdiv rminus-int" 0
THEN Auto))
) }
1
1. u : ℝ
2. v : ℝ
3. r : ℝ
4. b : {2...}
5. r(-b) < r
6. r < r(b)
7. u ≤ r
8. m : ℕ+
9. r ≤ (v - (r1/r(m)))
10. u < v
11. k : ℕ+
12. u < (v - (r1/r(k)))
13. ∃N:ℕ+. (((v - (r1/r(k))) ≤ (v - (r1/r(N)))) ∧ ((v - (r1/r(m))) ≤ (v - (r1/r(N)))))
⊢ ∃n:ℕ+. (iproper([u, v - (r1/r(n))]) ∧ (u ≤ r) ∧ (r ≤ (v - (r1/r(n)))))
Latex:
Latex:
1. u : \mBbbR{}
2. v : \mBbbR{}
3. r : \mBbbR{}
4. b : \{2...\}
5. r(-b) < r
6. r < r(b)
7. u \mleq{} r
8. m : \mBbbN{}\msupplus{}
9. r \mleq{} (v - (r1/r(m)))
10. u < v
11. \mexists{}k:\mBbbN{}\msupplus{}. (u < (v - (r1/r(k))))
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. (iproper([u, v - (r1/r(n))]) \mwedge{} (u \mleq{} r) \mwedge{} (r \mleq{} (v - (r1/r(n)))))
By
Latex:
(D -1
THEN (Assert \mexists{}N:\mBbbN{}\msupplus{}. (((v - (r1/r(k))) \mleq{} (v - (r1/r(N)))) \mwedge{} ((v - (r1/r(m))) \mleq{} (v - (r1/r(N))))) BY
(With \mkleeneopen{}imax(k;m)\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN Repeat ((RWO "imax\_unfold" 0 THEN Auto))
THEN AutoSplit
THEN nRAdd \mkleeneopen{}-(v)\mkleeneclose{} 0\mcdot{}
THEN Auto
THEN RWW "rminus-rdiv rminus-int" 0
THEN Auto))
)
Home
Index