Step
*
2
1
1
of Lemma
i-member-proper-iff
1. u : ℝ
2. v : ℝ
3. r : ℝ
4. b : {2...}
5. r(-b) < r
6. r < r(b)
7. m : ℕ+
8. u ≤ (r - (r1/r(m)))
9. r ≤ v
10. u < v
11. ∃k:ℕ+. (u < (v - (r1/r(k))))
⊢ ∃n:ℕ+. (iproper([u + (r1/r(n)), v]) ∧ ((u + (r1/r(n))) ≤ r) ∧ (r ≤ v))
BY
{ (D -1
THEN (Assert ∃N:ℕ+. (((r1/r(N)) ≤ (r1/r(k))) ∧ ((r1/r(N)) ≤ (r1/r(m)))) BY
(With ⌜imax(k;m)⌝ (D 0)⋅ THEN Auto THEN Repeat ((RWO "imax_unfold" 0 THEN Auto)) THEN AutoSplit))
) }
1
1. u : ℝ
2. v : ℝ
3. r : ℝ
4. b : {2...}
5. r(-b) < r
6. r < r(b)
7. m : ℕ+
8. u ≤ (r - (r1/r(m)))
9. r ≤ v
10. u < v
11. k : ℕ+
12. u < (v - (r1/r(k)))
13. ∃N:ℕ+. (((r1/r(N)) ≤ (r1/r(k))) ∧ ((r1/r(N)) ≤ (r1/r(m))))
⊢ ∃n:ℕ+. (iproper([u + (r1/r(n)), v]) ∧ ((u + (r1/r(n))) ≤ r) ∧ (r ≤ v))
Latex:
Latex:
1. u : \mBbbR{}
2. v : \mBbbR{}
3. r : \mBbbR{}
4. b : \{2...\}
5. r(-b) < r
6. r < r(b)
7. m : \mBbbN{}\msupplus{}
8. u \mleq{} (r - (r1/r(m)))
9. r \mleq{} v
10. u < v
11. \mexists{}k:\mBbbN{}\msupplus{}. (u < (v - (r1/r(k))))
\mvdash{} \mexists{}n:\mBbbN{}\msupplus{}. (iproper([u + (r1/r(n)), v]) \mwedge{} ((u + (r1/r(n))) \mleq{} r) \mwedge{} (r \mleq{} v))
By
Latex:
(D -1
THEN (Assert \mexists{}N:\mBbbN{}\msupplus{}. (((r1/r(N)) \mleq{} (r1/r(k))) \mwedge{} ((r1/r(N)) \mleq{} (r1/r(m)))) BY
(With \mkleeneopen{}imax(k;m)\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN Repeat ((RWO "imax\_unfold" 0 THEN Auto))
THEN AutoSplit))
)
Home
Index