Nuprl Lemma : id-mfun

[X:Type]. ∀[d:metric(X)].  x.x ∈ FUN(X ⟶ X))


Proof




Definitions occuring in Statement :  mfun: FUN(X ⟶ Y) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T lambda: λx.A[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mfun: FUN(X ⟶ Y) is-mfun: f:FUN(X;Y) all: x:A. B[x] implies:  Q so_apply: x[s] prop:
Lemmas referenced :  meq_wf is-mfun_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt lambdaEquality_alt hypothesisEquality universeIsType lambdaFormation_alt sqequalRule sqequalHypSubstitution hypothesis extract_by_obid isectElimination thin inhabitedIsType axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (\mlambda{}x.x  \mmember{}  FUN(X  {}\mrightarrow{}  X))



Date html generated: 2019_10_30-AM-06_21_54
Last ObjectModification: 2019_10_02-AM-09_57_43

Theory : reals


Home Index