Nuprl Lemma : id-mfun
∀[X:Type]. ∀[d:metric(X)].  (λx.x ∈ FUN(X ⟶ X))
Proof
Definitions occuring in Statement : 
mfun: FUN(X ⟶ Y)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
mfun: FUN(X ⟶ Y)
, 
is-mfun: f:FUN(X;Y)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
prop: ℙ
Lemmas referenced : 
meq_wf, 
is-mfun_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
dependent_set_memberEquality_alt, 
lambdaEquality_alt, 
hypothesisEquality, 
universeIsType, 
lambdaFormation_alt, 
sqequalRule, 
sqequalHypSubstitution, 
hypothesis, 
extract_by_obid, 
isectElimination, 
thin, 
inhabitedIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].    (\mlambda{}x.x  \mmember{}  FUN(X  {}\mrightarrow{}  X))
Date html generated:
2019_10_30-AM-06_21_54
Last ObjectModification:
2019_10_02-AM-09_57_43
Theory : reals
Home
Index