Nuprl Lemma : image-ap_wf

[X,Y:Type]. ∀[d:metric(Y)]. ∀[f:X ⟶ Y]. ∀[x:X].  (f[x] ∈ f[X])


Proof




Definitions occuring in Statement :  image-ap: f[x] image-space: f[X] metric: metric(X) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  prop: image-space: f[X] image-ap: f[x] member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  istype-universe metric_wf meq_wf meq-same
Rules used in proof :  universeEquality instantiate functionIsType inhabitedIsType isectIsTypeImplies isect_memberEquality_alt equalitySymmetry equalityTransitivity axiomEquality because_Cache setIsType universeIsType dependent_set_memberEquality_alt hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid hypothesisEquality applyEquality dependent_pairEquality_alt sqequalRule cut introduction isect_memberFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].  \mforall{}[x:X].    (f[x]  \mmember{}  f[X])



Date html generated: 2019_10_30-AM-06_34_48
Last ObjectModification: 2019_10_25-AM-11_20_22

Theory : reals


Home Index