Nuprl Lemma : image-ap_wf
∀[X,Y:Type]. ∀[d:metric(Y)]. ∀[f:X ⟶ Y]. ∀[x:X].  (f[x] ∈ f[X])
Proof
Definitions occuring in Statement : 
image-ap: f[x]
, 
image-space: f[X]
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
prop: ℙ
, 
image-space: f[X]
, 
image-ap: f[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
istype-universe, 
metric_wf, 
meq_wf, 
meq-same
Rules used in proof : 
universeEquality, 
instantiate, 
functionIsType, 
inhabitedIsType, 
isectIsTypeImplies, 
isect_memberEquality_alt, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
setIsType, 
universeIsType, 
dependent_set_memberEquality_alt, 
hypothesis, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
hypothesisEquality, 
applyEquality, 
dependent_pairEquality_alt, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[X,Y:Type].  \mforall{}[d:metric(Y)].  \mforall{}[f:X  {}\mrightarrow{}  Y].  \mforall{}[x:X].    (f[x]  \mmember{}  f[X])
Date html generated:
2019_10_30-AM-06_34_48
Last ObjectModification:
2019_10_25-AM-11_20_22
Theory : reals
Home
Index