Nuprl Lemma : implies-rsqrt-is-one
∀[x:ℝ]. rsqrt(x) = r1 supposing x = r1
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x), 
req: x = y, 
int-to-real: r(n), 
real: ℝ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
prop: ℙ, 
subtype_rel: A ⊆r B, 
implies: P ⇒ Q
Latex:
\mforall{}[x:\mBbbR{}].  rsqrt(x)  =  r1  supposing  x  =  r1
Date html generated:
2020_05_20-PM-00_32_32
Last ObjectModification:
2019_11_10-PM-01_07_24
Theory : reals
Home
Index