Nuprl Lemma : implies-rsqrt-is-one
∀[x:ℝ]. rsqrt(x) = r1 supposing x = r1
Proof
Definitions occuring in Statement : 
rsqrt: rsqrt(x)
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
Latex:
\mforall{}[x:\mBbbR{}].  rsqrt(x)  =  r1  supposing  x  =  r1
Date html generated:
2020_05_20-PM-00_32_32
Last ObjectModification:
2019_11_10-PM-01_07_24
Theory : reals
Home
Index