Nuprl Lemma : induced-metric_wf
∀[X:Type]. ∀[d:metric(X)]. ∀[Y:Type]. ∀[f:Y ⟶ X].  (induced-metric(d;f) ∈ metric(Y))
Proof
Definitions occuring in Statement : 
induced-metric: induced-metric(d;f)
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
metric: metric(X)
, 
induced-metric: induced-metric(d;f)
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
prop: ℙ
, 
guard: {T}
Lemmas referenced : 
rleq_wf, 
int-to-real_wf, 
req_wf, 
radd_wf, 
metric_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
hypothesisEquality, 
inhabitedIsType, 
universeIsType, 
dependent_set_memberEquality_alt, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
productElimination, 
lambdaFormation_alt, 
independent_pairFormation, 
because_Cache, 
productIsType, 
functionIsType, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
instantiate, 
universeEquality, 
dependent_functionElimination
Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[Y:Type].  \mforall{}[f:Y  {}\mrightarrow{}  X].    (induced-metric(d;f)  \mmember{}  metric(Y))
Date html generated:
2019_10_29-AM-11_04_11
Last ObjectModification:
2019_10_02-AM-09_46_03
Theory : reals
Home
Index