Nuprl Lemma : induced-metric_wf

[X:Type]. ∀[d:metric(X)]. ∀[Y:Type]. ∀[f:Y ⟶ X].  (induced-metric(d;f) ∈ metric(Y))


Proof




Definitions occuring in Statement :  induced-metric: induced-metric(d;f) metric: metric(X) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T metric: metric(X) induced-metric: induced-metric(d;f) and: P ∧ Q cand: c∧ B all: x:A. B[x] prop: guard: {T}
Lemmas referenced :  rleq_wf int-to-real_wf req_wf radd_wf metric_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution setElimination thin rename sqequalRule lambdaEquality_alt applyEquality hypothesisEquality inhabitedIsType universeIsType dependent_set_memberEquality_alt equalityTransitivity hypothesis equalitySymmetry productElimination lambdaFormation_alt independent_pairFormation because_Cache productIsType functionIsType extract_by_obid isectElimination natural_numberEquality axiomEquality isect_memberEquality_alt isectIsTypeImplies instantiate universeEquality dependent_functionElimination

Latex:
\mforall{}[X:Type].  \mforall{}[d:metric(X)].  \mforall{}[Y:Type].  \mforall{}[f:Y  {}\mrightarrow{}  X].    (induced-metric(d;f)  \mmember{}  metric(Y))



Date html generated: 2019_10_29-AM-11_04_11
Last ObjectModification: 2019_10_02-AM-09_46_03

Theory : reals


Home Index