Nuprl Lemma : inf_wf

[A:Set(ℝ)]. ∀[b:ℝ].  (inf(A) b ∈ ℙ)


Proof




Definitions occuring in Statement :  inf: inf(A) b rset: Set(ℝ) real: uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  inf: inf(A) b uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s]
Lemmas referenced :  and_wf lower-bound_wf all_wf real_wf rless_wf int-to-real_wf exists_wf rset-member_wf radd_wf rset_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality functionEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[A:Set(\mBbbR{})].  \mforall{}[b:\mBbbR{}].    (inf(A)  =  b  \mmember{}  \mBbbP{})



Date html generated: 2016_05_18-AM-08_10_35
Last ObjectModification: 2015_12_28-AM-01_16_16

Theory : reals


Home Index