Nuprl Lemma : infn-rleq
∀[I:{I:Interval| icompact(I)} ]
∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n. (req-vec(n;a;b)
⇒ ((f a) = (f b)))} . ∀x:I^n. ((infn(n;I) f) ≤ (f x))
Proof
Definitions occuring in Statement :
infn: infn(n;I)
,
interval-vec: I^n
,
req-vec: req-vec(n;x;y)
,
icompact: icompact(I)
,
interval: Interval
,
rleq: x ≤ y
,
req: x = y
,
real: ℝ
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
set: {x:A| B[x]}
,
apply: f a
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
all: ∀x:A. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
prop: ℙ
,
rleq: x ≤ y
,
rnonneg: rnonneg(x)
,
le: A ≤ B
,
less_than': less_than'(a;b)
,
interval-vec: I^n
,
decidable: Dec(P)
,
or: P ∨ Q
,
squash: ↓T
,
infn: infn(n;I)
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
real-vec: ℝ^n
,
top: Top
,
sq_stable: SqStable(P)
,
subtype_rel: A ⊆r B
,
req-vec: req-vec(n;x;y)
,
guard: {T}
,
sq_type: SQType(T)
,
subtract: n - m
,
cand: A c∧ B
,
nat_plus: ℕ+
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
assert: ↑b
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
bnot: ¬bb
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
real-vec-extend: a++z
,
inf: inf(A) = b
,
lower-bound: lower-bound(A;b)
,
rrange: f[x](x∈I)
,
rset-member: x ∈ A
,
rge: x ≥ y
Latex:
\mforall{}[I:\{I:Interval| icompact(I)\} ]
\mforall{}n:\mBbbN{}. \mforall{}f:\{f:I\^{}n {}\mrightarrow{} \mBbbR{}| \mforall{}a,b:I\^{}n. (req-vec(n;a;b) {}\mRightarrow{} ((f a) = (f b)))\} . \mforall{}x:I\^{}n.
((infn(n;I) f) \mleq{} (f x))
Date html generated:
2020_05_20-PM-00_40_02
Last ObjectModification:
2020_01_07-AM-00_51_30
Theory : reals
Home
Index