Nuprl Lemma : infn-rleq

[I:{I:Interval| icompact(I)} ]
  ∀n:ℕ. ∀f:{f:I^n ⟶ ℝ| ∀a,b:I^n.  (req-vec(n;a;b)  ((f a) (f b)))} . ∀x:I^n.  ((infn(n;I) f) ≤ (f x))


Proof




Definitions occuring in Statement :  infn: infn(n;I) interval-vec: I^n req-vec: req-vec(n;x;y) icompact: icompact(I) interval: Interval rleq: x ≤ y req: y real: nat: uall: [x:A]. B[x] all: x:A. B[x] implies:  Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] and: P ∧ Q prop: rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B less_than': less_than'(a;b) interval-vec: I^n decidable: Dec(P) or: P ∨ Q squash: T infn: infn(n;I) lelt: i ≤ j < k int_seg: {i..j-} real-vec: ^n top: Top sq_stable: SqStable(P) subtype_rel: A ⊆B req-vec: req-vec(n;x;y) guard: {T} sq_type: SQType(T) subtract: m cand: c∧ B nat_plus: + uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) assert: b ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt bnot: ¬bb so_lambda: λ2x.t[x] so_apply: x[s] real-vec-extend: a++z inf: inf(A) b lower-bound: lower-bound(A;b) rrange: f[x](x∈I) rset-member: x ∈ A rge: x ≥ y

Latex:
\mforall{}[I:\{I:Interval|  icompact(I)\}  ]
    \mforall{}n:\mBbbN{}.  \mforall{}f:\{f:I\^{}n  {}\mrightarrow{}  \mBbbR{}|  \mforall{}a,b:I\^{}n.    (req-vec(n;a;b)  {}\mRightarrow{}  ((f  a)  =  (f  b)))\}  .  \mforall{}x:I\^{}n.
        ((infn(n;I)  f)  \mleq{}  (f  x))



Date html generated: 2020_05_20-PM-00_40_02
Last ObjectModification: 2020_01_07-AM-00_51_30

Theory : reals


Home Index