Nuprl Lemma : int-radd_wf

[k:ℤ]. ∀[x:ℝ].  (k x ∈ ℝ)


Proof




Definitions occuring in Statement :  int-radd: x real: uall: [x:A]. B[x] member: t ∈ T int:
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T int-radd: x real: nat_plus: + prop: regular-int-seq: k-regular-seq(f) all: x:A. B[x] top: Top subtract: m
Lemmas referenced :  nat_plus_wf regular-int-seq_wf real_wf istype-int istype-void mul-distributes mul-associates minus-add add-associates minus-one-mul mul-swap mul-commutes add-swap mul-distributes-right add-commutes zero-mul zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule sqequalHypSubstitution setElimination thin rename dependent_set_memberEquality_alt lambdaEquality_alt addEquality multiplyEquality natural_numberEquality hypothesisEquality hypothesis applyEquality universeIsType extract_by_obid isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality_alt isectIsTypeImplies inhabitedIsType lambdaFormation_alt dependent_functionElimination because_Cache voidElimination minusEquality

Latex:
\mforall{}[k:\mBbbZ{}].  \mforall{}[x:\mBbbR{}].    (k  +  x  \mmember{}  \mBbbR{})



Date html generated: 2019_10_29-AM-09_31_40
Last ObjectModification: 2019_02_13-PM-00_46_29

Theory : reals


Home Index