Nuprl Lemma : integer-between-reals

a,b:ℝ.  ((r(2) ≤ (b a))  (∃k:ℤ((a < r(k)) ∧ (r(k) < b))))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rless: x < y rsub: y int-to-real: r(n) real: all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True or: P ∨ Q prop: exists: x:A. B[x] subtype_rel: A ⊆B int_upper: {i...} cand: c∧ B rge: x ≥ y guard: {T} rless: x < y sq_exists: x:A [B[x]] nat_plus: + decidable: Dec(P) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False req_int_terms: t1 ≡ t2 so_lambda: λ2x.t[x] nat: so_apply: x[s] subtract: m top: Top

Latex:
\mforall{}a,b:\mBbbR{}.    ((r(2)  \mleq{}  (b  -  a))  {}\mRightarrow{}  (\mexists{}k:\mBbbZ{}.  ((a  <  r(k))  \mwedge{}  (r(k)  <  b))))



Date html generated: 2020_05_20-AM-11_04_43
Last ObjectModification: 2020_03_14-AM-09_31_56

Theory : reals


Home Index