Nuprl Lemma : integer-between-reals
∀a,b:ℝ. ((r(2) ≤ (b - a))
⇒ (∃k:ℤ. ((a < r(k)) ∧ (r(k) < b))))
Proof
Definitions occuring in Statement :
rleq: x ≤ y
,
rless: x < y
,
rsub: x - y
,
int-to-real: r(n)
,
real: ℝ
,
all: ∀x:A. B[x]
,
exists: ∃x:A. B[x]
,
implies: P
⇒ Q
,
and: P ∧ Q
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
and: P ∧ Q
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
or: P ∨ Q
,
prop: ℙ
,
exists: ∃x:A. B[x]
,
subtype_rel: A ⊆r B
,
int_upper: {i...}
,
cand: A c∧ B
,
rge: x ≥ y
,
guard: {T}
,
rless: x < y
,
sq_exists: ∃x:A [B[x]]
,
nat_plus: ℕ+
,
decidable: Dec(P)
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
false: False
,
req_int_terms: t1 ≡ t2
,
so_lambda: λ2x.t[x]
,
nat: ℕ
,
so_apply: x[s]
,
subtract: n - m
,
top: Top
Latex:
\mforall{}a,b:\mBbbR{}. ((r(2) \mleq{} (b - a)) {}\mRightarrow{} (\mexists{}k:\mBbbZ{}. ((a < r(k)) \mwedge{} (r(k) < b))))
Date html generated:
2020_05_20-AM-11_04_43
Last ObjectModification:
2020_03_14-AM-09_31_56
Theory : reals
Home
Index