Nuprl Lemma : integral_wf
∀a:ℝ. ∀b:{b:ℝ| a ≤ b} . ∀f:[a, b] ⟶ℝ. ∀mc:f[x] continuous for x ∈ [a, b].  (∫ f[x] dx on [a, b] ∈ ℝ)
Proof
Definitions occuring in Statement : 
integral: ∫ f[x] dx on [a, b], 
continuous: f[x] continuous for x ∈ I, 
rfun: I ⟶ℝ, 
rccint: [l, u], 
rleq: x ≤ y, 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
member: t ∈ T, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
label: ...$L... t, 
true: True, 
less_than': less_than'(a;b), 
subtract: n - m, 
uimplies: b supposing a, 
uiff: uiff(P;Q), 
false: False, 
implies: P ⇒ Q, 
rev_implies: P ⇐ Q, 
not: ¬A, 
iff: P ⇐⇒ Q, 
or: P ∨ Q, 
decidable: Dec(P), 
and: P ∧ Q, 
le: A ≤ B, 
nat: ℕ, 
nat_plus: ℕ+, 
rfun: I ⟶ℝ, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
top: Top, 
exists: ∃x:A. B[x], 
converges: x[n]↓ as n→∞, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
integral: ∫ f[x] dx on [a, b], 
member: t ∈ T, 
all: ∀x:A. B[x], 
so_apply: x[s]
Rules used in proof : 
equalitySymmetry, 
equalityTransitivity, 
instantiate, 
minusEquality, 
intEquality, 
independent_isectElimination, 
independent_functionElimination, 
independent_pairFormation, 
unionElimination, 
dependent_functionElimination, 
natural_numberEquality, 
addEquality, 
setEquality, 
dependent_set_memberEquality, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
hypothesisEquality, 
independent_pairEquality, 
productElimination, 
lambdaEquality, 
because_Cache, 
applyEquality, 
hypothesis, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
rename, 
thin, 
setElimination, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}a:\mBbbR{}.  \mforall{}b:\{b:\mBbbR{}|  a  \mleq{}  b\}  .  \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  \mforall{}mc:f[x]  continuous  for  x  \mmember{}  [a,  b].    (\mint{}  f[x]  dx  on  [a,  b]  \mmember{}  \mBbbR{}\000C)
 Date html generated: 
2016_07_08-PM-06_00_20
 Last ObjectModification: 
2016_07_05-PM-03_15_05
Theory : reals
Home
Index